Evaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants
نویسندگان
چکیده
BACKGROUND AND OBJECTIVES Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The biofilm development of Pseudomonas aeruginosa was assessed on adhesive surfaces like dialysis membrane, stainless steel, glass and polystyrene. MATERIALS AND METHODS Microtiter plate biofilm assay was performed to assess the effect of nutrient medium and growth parameters of P. aeruginosa. Further, its growth on adhesive surfaces namely hydrophilic (dialysis membrane) and hydrophobic (polystyrene plate, square glass and stainless steel coupon) was assessed. The exopolysaccharide (EPS) was quantified using ruthenium red microplate assay and microscopic analysis was used to observe P. aeruginosa biofilm architecture. The anti-biofilm activity of herbal extracts on mature P. aeruginosa was performed. RESULTS The formation of large scale biofilms on dialysis membrane for 72 h was proved to be the best surface. In microscopic studies, very few exopolysaccaride fibrils, indicating a rather loose matrix was observed at 48 h. Further, thick exopolysaccaride, indicated higher adhesive properties at 72 h which is evident from ruthenium red staining. Among the plant extract used, Justicia wynaadensis leaf and Aristolochia indica (Eswari) root extract showed significant reduction of anti-biofilm activity of 0.178 OD and 0.192 OD in inhibiting mature biofilms at 0.225 OD respectively, suggesting the possible use of these extracts as efficient anti-adhesive and biofilm-disrupting agents with potential applications in controlling biofilms on surfaces. CONCLUSION Our study facilitates better understanding in the development of P. aeruginosa biofilms on different food processing and clinical surfaces ultimately taking care of food safety and hygiene.
منابع مشابه
Development of a Novel Anti-Adhesive Vaccine Against Pseudomonas aeruginosa Targeting the C-terminal Disulfide Loop of the Pilin Protein
The type IV pili (T4P) is a major virulence factor of Pseudomonas aeruginosa (P. aeruginosa) that is associated with primary adhesion, biofilm formation and twitching motility. This study focuses on the introduction of a novel biologically active subunit vaccine derived from the disulfide loop (DSL) of P. aeruginosa pilin. We investigated the expression of the novel PilA in-frame with pET26a ve...
متن کاملIn vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa
Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...
متن کاملEvaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa
Biosurfactants, the microbial originated surface active agents, can modify the physicochemical properties of surfaces and reduce the bacterial adhesion via changing bacterial adhesion interactions on surfaces. They were also able to block oxidative chain reactions and might show antioxidant properties. The goal of this study was to evaluate the antioxidant and antibiofilm activities of biosurf...
متن کاملبیوفیلم پسودوموناس ایروژینوزا و روشهای پیشگیری و درمانهای تازه آن
Background and Objective: Microbial biofilms are responsible for 65% of human infections, and are resistance to antibiotics. Pseudomonas aeruginosa is one of the most important biofilm producing bacteria. This review tries to explain the last mechanisms of Pseudomonas aeruginosa biofilm formation, the reasons for its resistance to antimicrobial agents, as well as new preventive measures and a...
متن کاملEvaluation of Anti-oxidant and Anti-biofilm Activities of Biogenic Surfactants Derived from Bacillus amyloliquefaciens and Pseudomonas aeruginosa
Biosurfactants, the microbial originated surface active agents, can modify the physicochemical properties of surfaces and reduce the bacterial adhesion via changing bacterial adhesion interactions on surfaces. They were also able to block oxidative chain reactions and might show antioxidant properties. The goal of this study was to evaluate the antioxidant and antibiofilm activities of biosurf...
متن کامل